
Janus API
HP NonStop® Server Access

Manual

Marcus von Cube
Systemsoftware

Am Hebestumpf 6
61273 Wehrheim

Germany
Phone: +49 6081 59527

Mobile: +49 177 3200614
Fax: +49 6122 56366

marcus@mvcsys.de
www.mvcsys.de

Date: March 12, 2008

M a r c u s
von Cube
Systemso ftware

Janus API Marcus von Cube Mar 12, 2008 Page ii

Contents
1 Introduction..1
1.1 History of the the Janus API..1
1.1.1 The beginnings...1
1.1.2 Getting independent...1
1.1.3 Extending the view...1
1.2 Basic functionality...2
1.2.1 Overview..2
1.2.2 What Janus is not meant for..2
1.2.3 Installation...3
1.2.4 Establishing a connection...3
1.2.5 Handling transactions..3
1.2.5.1 Starting and ending a transaction...3
1.2.5.2 Handling automatic transactions...3
1.2.6 Sending messages...3
1.2.6.1 What is a message?..3
1.2.6.2 Destinations...4
1.2.6.3 Timeouts and Nowait I/O...4
1.2.7 Receiving UMS messages...4
1.2.8 Error handling...5
1.2.9 Connection pooling..5
1.2.9.1 Connection pools in Java..5
1.2.9.2 The web based proxy..5
2 API details..6
2.1 The Windows DLL..6
2.1.1 Installation and general remarks..6
2.1.2 Linking the DLL into your application..6
2.1.2.1 Visual Basic...6
2.1.2.2 Delphi Pascal...6
2.1.2.3 C/C++...6
2.1.3 API calls...7
2.1.3.1 Connection Handling...7
2.1.3.2 Transactions..8
2.1.3.3 Sending messages..8
2.1.3.4 Error information..9
2.2 The C API... ...10
2.2.1 Introduction...10
2.2.2 Distributed files...10
2.2.2.1 Header files..10
2.2.2.2 C source files...10
2.2.2.3 Sample Clients...11
2.2.3 API calls...11
2.2.3.1 Connection handling..11
2.2.3.2 Disconnection..12
2.2.3.3 Errors...12
2.2.3.4 Transactions..12
2.2.3.5 Sending messages..12
2.2.3.6 Server Programming..13
2.2.3.7 Tracing and debugging..14
2.2.3.8 Utility functions...14

Janus API Marcus von Cube Mar 12, 2008 Page 1

1 Introduction
In Roman mythology, Janus (or Ianus) was the god of gates, doors, doorways, beginnings, and endings.

Janus was usually depicted with two faces looking in opposite directions. Janus was frequently used to sym-
bolize change and transitions such as the progression of past to future, of one condition to another, of one
vision to another, the growing up of young people, and of one universe to another. He was also known as the
figure representing time because he could see into the past with one face and into the future with the other.

http://en.wikipedia.org/wiki/Janus_(mythology)

1.1 History of the the Janus API
1.1.1 The beginnings
The software dates back to the year 1995. Back then, Tandem offered a product named Remote Server Call,
RSC, that enabled a client written in C to control a Pathway application, i. e. perform transactions and send
messages to named server classes. The Product is still available from HP.

A customer wanted to do the same from SAP...

The result was SAP_RSC, a small program running on a system supporting both APIs (SAP's CPI-C and
Tandem's RSC) which acts as a gateway between both worlds. With this application, the name Janus came
into my mind: Janus is a technology to bridge these two worlds, SAP and Tandem, by looking in each direc-
tion with a face of its own.1

1.1.2 Getting independent
SAP_RSC has one disadvantage, it depends on two libraries from two vendors which have to be available
on the same platform. RSC has features which are not needed in the SAP context. So I decided to create my
own implementation to reach the NonStop system via TCP/IP: TCP_TAN.2 I had to shorten the filename to
TCPTAN because of naming restrictions in the Guardian filesystem. The underscore symbolizes the bridge
between the two "halves" of each Janus gateway implementation.

SAP_RSC was replaced by SAP_TCP and TCPTAN. SAP_TCP runs somewhere in the SAP landscape and
TCPTAN on the NonStop server. TCPTAN does essentially what RSC does but with a totally different API
and some differences in functionality and handling.

1.1.3 Extending the view
Once independent from RSC and having created my own TCP/IP based protocol, it was only a small step to
extend the audience. The API can be used in applications outside the SAP world. The original C implemen-
tation is essentially unchanged from the beginnings of SAP_TCP and TCPTAN, only a few useful additions
have been made, like UMS (unsolicited messages) and nowait I/O.

The original API is complicated enough to warrant a simplification: JANUSDLL is a stripped down, Win-
dows only implementation which hides some of the complexity for simple clients. These can even be written
in other languages like Delphi or Visual Basic.

The biggest step forward was a complete reimplementation of the protocol in Java. With Janus/JAVA, con-
nectivity to Pathway servers is totally platform independent. There are no legacy native libraries involved.
Janus/JAVA does not only the communication, it aids in translating message structures between the Java and
the Tandem COBOL world.

1 There is even a version SAP_IBM which connects an R/3 system to a CICS application. It's a customer specific implementa-
tion. I can't tell wether the software is still in use.

2 There was an intermediate solution, TCP_RSC, a program running on a Unix platform to bridge between the Janus TCP/IP
protocol and the RSC product, but this is history.

http://en.wikipedia.org/wiki/Janus_(mythology
http://en.wikipedia.org/wiki/Janus_(mythology
http://en.wikipedia.org/wiki/Janus_(mythology

Janus API Marcus von Cube Mar 12, 2008 Page 2

1.2 Basic functionality
1.2.1 Overview

1.2.2 What Janus is not meant for
Janus does not attempt to replace RSC in every respect, it is simply a different attempt to solve a similar
problem, and not a clone.

TCPTAN is configured into the TCP/IP listener on the NonStop system. When a client makes a connection,
a separate process is started which handles the communication and owns the TMF transactions. The implica-
tions are twofold:

● The installation requires virtually no administration on the NonStop system. There is no process to
monitor, configure or restart, except the listener provided by the system.

● TCPTAN isn't multithreaded: Each connection requires its own process. The RSC TDP is one pro-
cess handling hundreds of simultaneous clients and therefore suitable for direct (PC) client
connections. Janus shouldn't be used in such a scenario because of the resources required on the
host. It is more suitable for middleware applications which pool connections, or for point to point
connections as in the SAP scenario.

A major implication has to do with unsolicited messages, sent from Guardian processes to clients. In RSC, a
client is configured as a virtual terminal connected to a central process, the TDP. UMS messages are sent to
the TDP and contain a terminal name to address the final destination. To send an UMS message to a Janus
client, the process name of the corresponding TCPTAN incarnation must be made public somehow by the
application. The API helps to accomplish this.

Janus API Marcus von Cube Mar 12, 2008 Page 3

1.2.3 Installation
Installation is a one time procedure. It requires copying an executable file, TCPTAN, to the Guardian file
system and changing the TCP/IP configuration.

1. Use ftp to copy tcptan.txe to $SYSTEM.JANUS.TCPTAN,7001

2. Add a line to your PORTCONF file:
2000 $SYSTEM.JANUS.TCPTAN

3. Restart your listener.

You can start a separate listener instance if you want to run TCPTAN under a special account or if you can't
change the system configuration. The port number, here 2000, can be chosen freely. 2000 is the client
default value.

1.2.4 Establishing a connection
To establish a connection, you need to provide a host name, a port number and the name of the default
PATHMON process where your application resides. There is no login procedure, the messages are sent on
behalf of the user who started the TCP/IP listener.2

The procedure names differ from implementation to implementation. The C API returns a pointer to a
TCP_HOST structure which is automatically allocated and contains the details of the connection. The Java
API returns a Connection object which not only contains all information about the connection but also
provides the methods to talk to the host system. The DLL keeps track of connections internally. It was origi-
nally designed to allow for just one simultaneous connection but that has been extended recently.

The connection is bound to a TCPTAN process which acts as a gateway. Disconnecting the link stops the
TCPTAN process. The name of the process can be queried from the connection object for monitoring pur-
poses or to allow the client to receive UMS messages.

1.2.5 Handling transactions

1.2.5.1 Starting and ending a transaction
Janus provides calls to begin, end or abort (rollback) a transaction. TCPTAN owns the TMF transaction.
When a connection is disconnected and a transaction is still in progress, it is rolled back by TMF.

1.2.5.2 Handling automatic transactions

Automatic transaction handling has been borrowed from RSC. The client provides two 16 bit boundaries
which are checked against the first two bytes of the result message from the server, interpreted as a reply
code. If the reply code is between the boundaries, the transaction is automatically committed by TCPTAN.
This saves an additional I/O operation over the network.

When the reply code is outside the given interval, the transaction is left open. The client must then decide
whether to abort or to commit it.

1.2.6 Sending messages

1.2.6.1 What is a message?

A message is just a bunch of bytes. Interpretation is up the the server and the client. Janus can handle mes-
sages up to 32000 bytes. Typically, messages are defined in the DDL data dictionary. Janus comes with a
tool to read this information and convert it to Java objects. For mapping DDL structures to C or other lan-
guages, the DDL compiler provides the conversion commands.

1 I can't provide an Itanium object at the moment but a file code 100 RISC version is available on request.
2 You can probably change some file attributes of TCPTAN so that it assumes the identity of the owner of the TCPTAN object

file. See the FUP manual for details.

Janus API Marcus von Cube Mar 12, 2008 Page 4

1.2.6.2 Destinations
Messages are sent to specific destinations. A destination can be one of the following:

● a Pathway server class name,

● a Pathway server class name in a specific pathmon,

● a Guardian process name.

The usual case is the first. The message goes to the named server class in the standard pathmon the name of
which has been set when the connection was set up. If you need to send a message to a specific pathmon
process, just append '@' and the pathmon name to the destination, e. g. "MY-SERVER@\TD01.$PM2".
As you can see, Expand networks are fully supported.

Instead of a server class name, you can send a message to a named process. This is done when the name
starts with a backslash or dollar sign. The process is opened and closed for each I/O.

1.2.6.3 Timeouts and Nowait I/O

A message can be sent with a timeout value in hundredths of seconds. If the server does not respond within
the time given, the I/O is canceled and an error is returned to the client. The TMF transaction is not affected
by the timeout, it's up the client to handle the consequences.

A timeout value of -1 disables timeout, the client blocks until the server replies.

A timeout value of zero starts a nowaited I/O operation which returns immediately. Just one simultaneous
operation per connection can be started in this manner. To complete the operation, a call to the awaitio API
function is required. This call has its own timeout value. When the I/O is not completed within the timeout,
the operation returns with an error, but is not canceled automatically. It must be completed by another call to
awaitio or canceled by a call to the cancel API function.

1.2.7 Receiving UMS messages
A Janus client can receive unsolicited messages from a process on the NonStop system. There are two ways
to set up the necessary environment:

● A call to the AcceptNew API function establishes a second TCP/IP link to the already running
TCPTAN process and returns its control structure to the client. This might be impossible, if there is
a firewall between the client and the machine running TCPTAN, because the port number is deter-
mined on the fly and the link is established backwards from the NonStop system to the client.

● To overcome the firewall problem, the client can establish a dedicated connection with the string
"UMS" instead of a pathmon name. This starts another instance of TCPTAN which can only be used
for UMS messaging.

In order to handle incoming UMS messages, a separate thread of execution should be created within the
client software. This thread can use the ReceiveData API function to read an incoming message and reply
with the respective Send API calls to the sender.

The application must provide a means of broadcasting the Guardian process name of the associated
TCPTAN process to the potential UMS senders on the NonStop system, e. g. by placing it in a host database
through a dedicated pathway server class.

The format of the UMS message is compatible to RSC. The terminal and alias fields are transmitted to the
client and can be freely used.

Janus API Marcus von Cube Mar 12, 2008 Page 5

1.2.8 Error handling
There are mainly two classes of errors that can occur: Communication failures on the network link or prob-
lems with the application on the NonStop host. The C API returns an error code and provides a means to get
the details of the failure. In case of a host application failure, additional fields are returned. They are filled
similar to what RSC would return in the same situation, but TCPTAN is less verbose than RSC. In any case,
a short text is returned.

The Java API throws either a CommException or a TandemException, in case of a failure. The
exception object contains the detailed error information.

1.2.9 Connection pooling
Pooling connections helps to reduce resource requirements on the NonStop system. Connection pooling is
directly available to Java clients and indirectly, through the Janus Web Application, for any other API client.

1.2.9.1 Connection pools in Java
The Java API is fully explained in the JavaDoc documentation available here:
http://www.mvcsys.de/doc/javadoc/janus/api/index.html. The comments are in German but that might
change in the near future. Look at the ConnectionPool class description.

1.2.9.2 The web based proxy

The Janus Web Application can be installed in any servlet container, such as Apache Tomcat, IBM Web-
Sphere or even SAP NetWeaver. It listens on a TCP/IP port for incoming connections and maps them to a
pool of connections to the NonStop host. As long as no TMF transaction or nowait I/O is open, the connec-
tions are returned to the pool right after the I/O. In case of an open transaction, the connection is reserved
until a commit or rollback. This is fully transparent to the client except for one fact: The client cannot set a
default pathmon name, because the process name is defined in the connection pool configuration. The
"server@pathmon" notation is still possible.

http://www.mvcsys.de/doc/javadoc/janus/api/index.html
http://www.mvcsys.de/doc/javadoc/janus/api/index.html
http://www.mvcsys.de/doc/javadoc/janus/api/index.html

Janus API Marcus von Cube Mar 12, 2008 Page 6

2 API details
2.1 The Windows DLL
2.1.1 Installation and general remarks
The Windows DLL is designed for client applications which need to access Pathway servers and manage
transactions. The original version allowed just one connection to the NonStop system. It is not necessary to
keep track of a connection object after the connection is established. The current version supports juggling
with more than one simultaneous connection, if necessary. Unsolicited Messaging is not supported.

The DLL is compiled with Borland C and works with Delphi or Visual Basic. Other languages should work
likewise. The file janusdll.dll contains everything you need. Just put it somewhere in the path or in the cur-
rent directory of your application.

2.1.2 Linking the DLL into your application
The way of linking the DLL into your application depends on the programming language. The exported
names are all uppercase and use the stdcall calling convention.

2.1.2.1 Visual Basic
The following example shows how the call to JANUSCONNECT is defined in the .net version of Visual
Basic:

Protected Declare Ansi Function JANUSCONNECT Lib "JANUSDLL.DLL" _
 (ByVal host As String, ByVal port As Integer, ByVal pathmon As String) _
 As Integer

Visual Basic 6 and earlier shouldn't be too different.

Your .net application must be given permission to call native code, otherwise a security exception will be
thrown. Look into directory vb\.net in the installation archive for a complete implementation and a sam-
ple client.

2.1.2.2 Delphi Pascal
The same example as above in Delphi Pascal looks like this:

const JANUSDLL = 'JANUSDLL.DLL';

function JanusConnect(pcHost: pchar;
 nPort: longint;
 pcPathmon: pchar): longint;
 stdcall external JANUSDLL name 'JANUSCONNECT';

A Pascal unit is available on request.

2.1.2.3 C/C++

For C and C++ programmers, the header file janusdll.h contains the necessary definitions. The linker defini-
tion file janusddl.def lists the exported functions.

For Microsoft compilers, the header file needs to be modified. The version provided uses Borland syntax.

My advice for C programmers: Use the full C API and add the source files to your project. This provides
more flexibility and aids in debugging.

Janus API Marcus von Cube Mar 12, 2008 Page 7

2.1.3 API calls
The API calls are shown in C notation, because the DLL is written in C. It shouldn't be too hard to mentally
translate the descriptions into your programming language of choice. Strings, like host or server class
names, are C strings, i. e. they are terminated by a binary zero character. The above mentioned declarations
in Pascal or Basic take care of the conversion automatically.

2.1.3.1 Connection Handling

The DLL can handle a maximum of 10 connections, numbered from 0 to 9. They are maintained in an inter-
nal table. The following call selects a specific one:

int JANUSSELECT(int connection);

The number of the previously selected connection is returned so that you can switch back if needed. If you
only need one connection, it's not necessary to call this function at all. Only active connections reserve any
resources. Call JANUSSELECT before any other API call to direct it to the selected connection! This type
of juggling with the connections is not thread save! If you want to create a multithreaded application with
multiple connections, you must use the full C API.

Sample:
oldconn = JANUSSELECT(newconn);

In order to establish a connection, you need to call the following function:
int JANUSCONNECT(char *host, int port, char *pathmon);

The parameters are the TCP/IP host name, port number and the default Pathmon name. The function returns
zero if the connection could be established, -1 in case of an error. The most recent call to JANUSSELECT
determines, which of the possible 10 connections is established.

Example:
ret = JANUSCONNECT("tandem", 2000, "$PM");

This connects to the host "tandem" at port number 2000. The default pathmon name is "$PM".

When you are done or in case of network errors, you should disconnect from the host with the following
function:

int JANUSDISCONNECT(void);

This disconnects the current connection. The return value is always zero.

Example:
ret = JANUSDISCONNECT();

You can disconnect all active connections with a single call:
int JANUSDISCONNECTALL(void);

The return value is always zero.

Example:
ret = JANUSDISCONNECTALL();

Janus API Marcus von Cube Mar 12, 2008 Page 8

2.1.3.2 Transactions
All transaction handling is done through a single API call:

int JANUSTRANSACTION(int mode);

The type of the call is determined by parameter mode. In C, this is a single character. In other languages
you might need to convert it to the corresponding ASCII code. A return value of zero indicates a successful
call, -1 indicates an error.

Transaction
Type

ASCII
Value

Symbolic Name Description

'B' 66 TT_BEGIN Start a TMF transaction on the NonStop system.
'E' 69 TT_COMMIT End the current TMF transaction. Commit all database updates.
'R' 82 TT_ROLLBACK Roll back the current TMF transaction. Cancel all database

updates.

The C header file defines the symbolic constants. It is advisable to do the same in your programming lan-
guage.

Examples:
ret = JANUSTRANSACTION(TT_BEGIN);
ret = JANUSTRANSACTION(TT_COMMIT);
ret = JANUSTRANSACTION(TT_ROLLBACK);

Automatic transactions as outlined in the previous chapter are not available in the DLL.

2.1.3.3 Sending messages

To send a message to a destination -either a server class name (@pathmon name, if desired), or a named pro-
cess-, you have to provide two buffers and their respective lengths. The buffers are arrays of bytes. It
depends on the programming language how data structures are mapped to these arrays. The NonStop system
uses single byte character sets. If your environment uses Unicode, a translation must be done in your appli-
cation.

A message is sent like this:
int ENTRY JANUSSENDDATA(char *server,
 char *buffer, int len,
 char *reply, int replylen);

Janus sends len bytes to the server from the buffer and places the answer into reply, which is at
most replylen bytes long. The actual length is returned by the function. If the return value is negative
(-1), an error has occurred. buffer and reply may point to the same memory area.

Example:
reply_len = JANUSSENDDATA("PW823",
 message, message_len,
 reply, reply_len);

reply_len = JANUSSENDDATAWITHTIMOUT("PW823",
 message, message_len,
 reply, reply_len,
 300L);

A variant of the API function exists which allows to specify a timeout value in hundredths of seconds:
int ENTRY JANUSSENDDATAWITHTIMEOUT(char *server,
 char *buffer, int len,
 char *reply, int replylen,
 long timeout);

Janus API Marcus von Cube Mar 12, 2008 Page 9

A timeout of -1 is treated as an infinite wait, while a timeout of zero starts a nowaited send. In the latter
case, reply and replylen are ignored.

Nowait sends have to be completed or canceled by either one of the following calls:
int ENTRY JANUSAWAITIO(long timeout, char *reply, int replylen);

int ENTRY JANUSCANCEL(void);

JANUSAWAITIO returns the actual length of the reply, if the call completes normally, -1 for an error, or -2
in case of a timeout. Timeouts do not automatically terminate the operation, your code has to do it.

Example:
ret = JANUSAWAITIO(300L, reply, replylen);
if (ret == TIMEOUT) JANUSCANCEL();

The constant TIMEOUT is defined in the C header file as (-2).

2.1.3.4 Error information
If any of the API calls returns a value of -1, an error has occurred. The following call returns an error mes-
sage in plain text:

int ENTRY JANUSERROR(char *buffer, int len);

You provide a buffer for the text and it's maximum length. The returned string is terminated by a binary
zero. The return value is the actual string length without the delimiter.

Example:
char error_message[500];
len = JANUSERROR(error_message, 500);

Janus API Marcus von Cube Mar 12, 2008 Page 10

2.2 The C API
2.2.1 Introduction
The C API is the full blown Janus API which is also used in the TCPTAN gateway. This is, in every respect,
the reference implementation of the underlying protocol. It is written in standard ANSI C and should com-
pile easily on almost any ANSI compatible system. Because it uses TCP/IP sockets for communication, a
matching socket library is required. You must declare a global character array of total length 9 with the name
MyName in your program and store a descriptive short name of your application there, otherwise you get
linking errors.

The API supports thread safe client access to the NonStop server. All functions use a handle, which is a
pointer to a communication structure. The handle is returned by the TCP_Connect API call. Upon discon-
nect by a call to TCP_Disconnect, the communication structure and all associated resources are freed.

Clients can implement UMS services to NonStop processes. On request, the API creates a separate connec-
tion with its corresponding communication structure. The client should start a dedicated thread to handle
incoming messages.

You can even create a Janus server with the API. It listens on a port and accepts messages in the same way
as TCPTAN does. I've used this feature in the past to implement dummy servers to act as mockups for Janus
client applications. This has made me independent from a real NonStop system during development.1

2.2.2 Distributed files

2.2.2.1 Header files

The API comes with four header files, three of which are always needed: defs.h, util.h and tcpcomm.h. A
fourth header, ums.h, is only needed for unsolicited messaging.

Header file Description
tcpcomm.h The main header which includes the next two files. It contains definitions and prototypes for

all Janus API calls.

defs.h Common definitions such as OK or TRUE, error codes and the transaction types.

util.h Definitions for to the utility library util.c. Its functions are internally used by the API for
message formatting, trace file handling, etc.

ums.h This file should be used on the NonStop system. It contains the necessary definitions to
send UMS messages to Janus (or RSC) clients. Its not needed for client programming.

A client needs to include tcpcomm.h. C++ clients must surround the #include directive with an extern
"C" declaration.

2.2.2.2 C source files

The API is contained in just two source files, tcpcomm.c and util.c. They implement the functions defined in
their respective header files. Simply add both files to your project or makefile. I've successfully compiled
the sources under Windows (with Borland and Microsoft compilers), OS/2, Linux and various Unix systems
with the system compilers (ANSI required!) or GCC. They can be compiled on the NonStop system, too.

If tcpcomm.c does not compile, the most probable cause is an incompatibility with the socket headers. The
file starts with a lengthy section of includes which are grouped by conditional compilation directives. Here
is the point where system dependent patches might be necessary.

1 A real life application of this technique is used in Janus/IDOC.

Janus API Marcus von Cube Mar 12, 2008 Page 11

2.2.2.3 Sample Clients
The package contains two more source files, tclient.c and uclient.c. The former is a sample client which
sends a message to a server on the NonStop system and which accepts UMS messaging. The latter is a
Guardian client that can send UMS messages to a running instance of tclient. Compile it on your NonStop
system!

2.2.3 API calls

2.2.3.1 Connection handling

All connection information is stored in a TCP_HOST structure:
struct {
 int connected; /* TRUE while connected */
 int option; /* Options, e. g. NOWAIT */
 int socket_recv; /* TCP/IP socket for Recieve */
 int socket_send; /* TCP/IP socket for Send */
 unsigned bytes_written; /* Statistics */
 unsigned bytes_received; /* ditto */
 ERROR_CODE error_code; /* Last error code */
 ERROR_TYPE error_type; /* Type of error */
 char error_text[544]; /* error message text */
 unsigned error_no; /* Guardian error */
 unsigned subsystem; /* Subsystem */
 unsigned subsystem_error; /* Subsystem error */
 unsigned extended_error; /* Extended error */
 unsigned error_class; /* Error class */
 TRANSACTION_TYPE transaction_type; /* Transaction type */
 int success_lo, success_hi; /* Automatic transactions */
 TCP_MESSAGE_TYPE message_type; /* Type of last message received */
 unsigned user_len; /* Length of user data */
 char *user_data; /* Pointer to user data */
 char *destination; /* Pointer to destination */
 long timeout; /* Timeout value x0.01s */
 unsigned io_len; /* Total buffer length */
 char io_buffer[33000]; /* I/O buffer */
};

Call one of the following functions to establish a connection:
TCP_HOST *TCP_Connect(char *host_name, int port, char *pathmon);
TCP_HOST *TCP_Accept(int argc, char **argv);
TCP_HOST *TCP_AcceptNew(TCP_HOST *host, int port);

TCP_Connect creates a client connection. The parameters host_name and port determine the Non-
Stop system where TCPTAN runs, pathmon is the default pathmon process name.

TCP_Accept creates a server connection. The parameters argc and argv are the parameters to main of
the C runtime. The possible arguments differ from operating system to operating system. In Unix or Linux, a
"-" or "-1" argument sets up the program to be started from inetd. The argument -P<port> makes the
program listen on the given port number. In this case, only one instance of the server can run on the same
port.

TCP_AcceptNew creates an UMS connection with an already running instance of TCPTAN. host must
point to a handle returned by TCP_Connect. The port number given may be -1 or a positive short integer.
It is used for a reverse TCP connection from TCPTAN to the client. -1 means that the port number is deter-
mined automatically. The returned handle can only be used for UMS messaging. If TCP_AcceptNew
hangs, there is a firewall in the way. You can then start a dedicated instance of TCPTAN by calling
TCP_Connect with a pathmon name of "UMS". In any case, the TCPTAN process name can be found in
the user_data field of the returned handle. Your application must broadcast this name to any potential
UMS senders.

Janus API Marcus von Cube Mar 12, 2008 Page 12

2.2.3.2 Disconnection
This call terminates a connection and frees all resources:

int TCP_Disconnect(TCP_HOST *host);

It always returns OK.

2.2.3.3 Errors

If TCP_Connect or TCP_Accept fail, they nevertheless return a non-NULL handle, with the field
connected set to FALSE and the error fields properly filled. Use TCP_Disconnect to free the handle!
If the returned handle is null, there was a memory allocation problem. TCP_AcceptNew sets the error
fields in the parent handle instead, and returns a NULL handle to the caller, if the connection cannot be
established.

All other API functions return either a data length, OK (0) or NOT_OK (-1). A return value of NOT_OK indi-
cates an error and the error fields in the TCP_HOST structure pointed to by the handle are filled.

2.2.3.4 Transactions
All transaction handling is done through a single API call:

int TCP_Transaction(TCP_HOST *host, TRANSACTION_TYPE mode,
 int success_lo, int success_hi);

The type of the call is determined by parameter mode. TRANSACTION_TYPE is an enumeration with the
following values:

Transaction type Value Description
TT_NONE 'N' No transaction is in progress. Normally, this state is only used

internally, but you can use it as an argument to TCP_Transaction
to check if the connection is still functional. TCPTAN treats it as a
no-operation.

TT_BEGIN 'B' Start a TMF transaction on the NonStop system.
TT_COMMIT 'E' End the current TMF transaction. Commit all database updates.
TT_ROLLBACK 'R' Roll back the current TMF transaction. Cancel all database updates.
TT_SINGLE 'S' TCPTAN starts a transaction and stores the boundary values

success_lo and success_hi for automatic transaction handling
(see chapter 1.2.5.2).

TT_AUTOCOMMIT 'A' Works just like TT_SINGLE but doesn't start a transaction. Both
calls just affect the next server message.

2.2.3.5 Sending messages
To send a message to a destination -either a server class name (@pathmon name, if desired), or a named pro-
cess-, you have to provide two buffers and their respective lengths. The buffers are arrays of bytes which can
be mapped to C structures generated by the DDL compiler. Be aware that some architectures have alignment
restrictions which are incompatible with the DDL generated definitions!

A message is sent with either of the following routines:
int TCP_SendData(TCP_HOST *host,
 char *destination,
 void *buffer,
 int len,
 void *reply,
 int reply_len);

Janus API Marcus von Cube Mar 12, 2008 Page 13

int TCP_SendDataWithTimeout(TCP_HOST *host,
 char *destination,
 void *buffer,
 int len,
 void *reply,
 int reply_len,
 long timeout);

Janus sends len bytes to the server from the buffer and places the answer into reply, which is at
most reply_len bytes long. The actual length of the reply is returned by the function. If the return value
is NOT_OK (-1), an error has occurred. buffer and reply may point to the same memory area.

The second variant allows for a timeout value in hundredths of seconds. A value of -1 is treated as an infi-
nite wait, while a timeout of zero starts a nowaited send. In the latter case, reply and reply_len are
ignored.

A nowaited I/O has to be completed or canceled by either one of the following calls:
int TCP_AwaitIo(TCP_HOST *host,
 long timeout,
 void *reply,
 int reply_maxlen);

int TCP_Cancel(TCP_HOST *host);

TCP_AwaitIo returns the actual length of the reply, if the call completes normally or NOT_OK in case of
an error. To determine, if the error was a timeout, check host->error_no for a value of 40 which is the
corresponding Guardian error code. Timeouts do not automatically terminate the operation, your application
has to do it.

2.2.3.6 Server Programming

A server receives and replies to messages. It doesn't matter whether it is an UMS thread within a client or a
standalone server process that has called TCP_Accept.

Receiving a message means calling the following function in a loop:
int TCP_RecvData(TCP_HOST *host);

The message contents is stored in host->user_data, its length in host->user_len. The type of the
message is left in the field host->message_type. This should be MT_DATA for ordinary data mes-
sages. Your code is free to handle different types of messages, like transactions, but this is left to you.

If TCP_RecvData returns NOT_OK, the connection is very likely to be broken and it is advisable to exit
the server loop and close the connection.

Your code must reply to all incoming messages with either of the following calls:
int TCP_SendReply(TCP_HOST *host,
 unsigned int reply_len,
 char *reply);

int TCP_SendAck(TCP_HOST *host, char *text);

int TCP_SendNak(TCP_HOST *host, int err, char *text);

TCP_SendReply sends a reply message with data back to the sender, TCP_SendAck just an empty posi-
tive acknowledge with an optional text message. TCP_SendNack sends an error message with an
appropriate error code back. The error code should resemble some Guardian filesystem error.

Janus API Marcus von Cube Mar 12, 2008 Page 14

2.2.3.7 Tracing and debugging
You can set the environment variables TRACE and/or DEBUG to ON, in order to create a trace file or addi-
tional debugging output to the console. The name of the trace file is the name of the application as stored in
MyName plus the filename extension .trc. Trace and log files (created by a call to the log() utility func-
tion, ending in .log) are placed in the current directory or the directory named in the environment variable
LOGDIR.

2.2.3.8 Utility functions
The util.c library contains some useful functions as listed in the English translation of util.h below:

/*
 * Data type for time and date information
 */
typedef struct {
 short year,
 month,
 day,
 hour,
 minute,
 sec,
 hsec;
} TIMEBUFF;

/*
 * Is debugging or tracing turned on by the
 * environment variables DEBUG and TRACE?
 */
int DebugON(void);
int TraceON(void);

/*
 * Handle the trace file
 */
void TraceClose(void);
extern FILE *TraceFile;

/*
 * Call an external script "meldung" which might be used
 * to send an error message to an operator console
 */
void Meldung(int level, char *text);

#define LVL_INFO 0
#define LVL_WARNING 1
#define LVL_ERROR 2
#define LVL_FATAL 3

/*
 * Write a message to the application log file
 */
void Log(int level, char *form, ...);

/*
 * Convert binary values to COBOL-like numeric strings and back
 */
char *CnvIntChar(int number, char *buff, int size);
int CnvCharInt(char *buff, int size);
char *CnvLongChar(unsigned long number, char *buff, int size);
unsigned long CnvCharLong(char *buff, int size);
int IsNumeric(char *buff, int size);

/*
 * Convert fixed length character data to zero terminated C strings
 * and back
 */
char *CnvCharStr(char *buffin, char *buffout, int size);
char *CnvStrChar(char *buffin, char *buffout, int size);

/*
 * ISO8859 <-> EBCDIC Conversions
 */
void CMCNVI_(unsigned char *buff, int len, int *rc);
void CMCNVO_(unsigned char *buff, int len, int *rc);
unsigned char *CnvAsciiEbcdic(char *ascii, unsigned char *ebcdic, int size);
char * CnvEbcdicAscii(unsigned char *ebcdic, char *ascii, int size);

Janus API Marcus von Cube Mar 12, 2008 Page 15

/*
 * Time and date handling
 */
TIMEBUFF *GetDateTime(TIMEBUFF *time_buff);
char *CnvDate(TIMEBUFF *time_buff, char *buff);
char *CnvTime(TIMEBUFF *time_buff, char *buff);
char *CnvTimestampNumeric(TIMEBUFF *time_buff, char *buff, int size,
 BOOL terminate);
TIMEBUFF *CnvNumericTimestamp(char *buffin, TIMEBUFF *time_buff, int size);

/*
 * SQL time and date conversions
 * JJJJ-MM-TT:hh:mm:ss.ffffff"
 */
#define TIMESTAMP_YEAR 0
#define TIMESTAMP_MONTH 1
#define TIMESTAMP_DAY 2
#define TIMESTAMP_HOUR 3
#define TIMESTAMP_MINUTE 4
#define TIMESTAMP_SECOND 5
#define TIMESTAMP_FRACTION 6
char *CnvTimestampSql(TIMEBUFF *time_buff, char *buff,
 int start, int start_precision,
 int end, int fraction_precision);
TIMEBUFF *CnvSqlTimestamp(char *buffin, TIMEBUFF *time_buff, int start);

/*
 * Some macros to simplyfy moves from and to COBOL messages
 */
#define PUT_STR(str, dest) CnvStrChar(str, dest, (int) sizeof(dest))
#define PUT_INT(num, dest) \
 CnvIntChar((int) num, dest, (int) sizeof(dest))
#define PUT_SINT(num, dest) \
 CnvIntChar((int) num, dest, -((int) sizeof(dest)))
#define PUT_LONG(num, dest) \
 CnvLongChar((unsigned long) num, dest, (int) sizeof(dest))
#define GET_STR(src, str) CnvCharStr(src, str, (int) sizeof(src))
#define GET_INT(src) CnvCharInt(src, (int) sizeof(src))
#define GET_LONG(src) CnvCharLong(src, (int) sizeof(src))
#define NUMERIC(src) IsNumeric (src, (int) sizeof(src))
#define TRIM(str) CnvCharStr((char *) str, (char *) str, \
 (int) strlen(str))
#define CLEAR(dest) memset(&dest, 0, sizeof(dest))

#define PUT_EBCDIC(str, dest) \
 CnvAsciiEbcdic(CnvStrChar(str, dest, (int) sizeof(dest)), \
 dest, (int) sizeof(dest))

#define GET_EBCDIC(src, str) \
 CnvEbcdicAscii(CnvCharStr(src, str, (int) sizeof(src)), \
 str, (int) strlen(str))

#define PUT_TIME(src, dest) \
 CnvTimestampNumeric(src, (char *) &dest, (int) sizeof(dest), FALSE)
#define GET_TIME(src, dest) \
 CnvNumericTimestamp((char *) &src, dest, (int) sizeof(src))

/*
 * More macros
 */
#ifndef max
#define max(a,b) ((a)>=(b)?(a):(b))
#endif

#ifndef min
#define min(a,b) ((a)<=(b)?(a):(b))
#endif

Janus API Marcus von Cube Mar 12, 2008 Page 16

2.3 The Java API
2.3.1 Introduction
When I decided to port Janus to Java I was pretty sure I did not want to create a thin Java wrapper around
the C libraries, as many some smart companies do with their "Java enabled" drivers. If you go the Java way,
go it one hundred percent!

The result is a complete reimplementation of the TCP/IP based communication protocol, 100% pure Java
and thus totally independent of the underlying operating system. Janus/JAVA is fully object oriented. Mes-
sages are objects as are connections. Errors are handled via exceptions which wrap the detailed error codes.

The package names, janus.*, do not follow the standard Java naming conventions.1 They should, and
probably will be named de.mvcsys.janus.*. This will introduce incompatible changes to the existing
API and I'm a little reluctant to perform the transition right now. Keep in mind, that the API is subject to
change.

The full JavaDoc documentation can be found online: http://www.mvcsys.de/doc/javadoc/janus/api.

2.3.2 Installation
Janus comes as a single library, janus.jar. The library must be part of the class path of your application. One
way to install it is the jre\lib\ext directory of your JVM. This way, Janus becomes a system extension
and is available to all applications.

For web applications, the right place to put janus.jar is WEB-INF/lib. You can simply deliver it together
with your web application and need not tamper with system directories.

The JVM must be version 1.3 or above.2

2.3.3 Generating Messages from DDL

2.3.3.1 Installation of ddl2java.exe
A Windows command line tool, ddl2java.exe,3 converts messages defined in the DDL dictionary to Java
classes. It is based on the Remote Enscribe / Remote SQL server which has to be installed on the develop-
ment NonStop system. This is very similar to the installation of TCPTAN. Just put the RSQLSRV4 object on
your system and add the following line to the listener configuration:

3000 $SYSTEM.JANUS.RSQLSRV

The port number, 3000, can be chosen freely. Put ddl2java.exe somewhere in your path.

2.3.3.2 Starting ddl2java.exe
The program has two modes: messages or constants. Messages are generated from DDL DEF objects, Con-
stants from DDL CONST objects.

Create a directory where the generated Java files shall reside and switch to it. Now start ddl2java.exe:
ddl2java.exe <options> <host:port> <dictvol> <item> [<item> ...]

1 When I started the development, I hadn't registered my mvcsys.de domain, yet.
2 Basic functionality is available for Java 1.1 implementations.
3 Do not confuse it with the jToolkit ddl2java tool. The name is the same, the functionality is not!
4 If you want to use the RSQL API, you'll need to SQL-compile the object. For ddl2java.exe, this is not necessary.

http://www.mvcsys.de/doc/javadoc/janus/api

Janus API Marcus von Cube Mar 12, 2008 Page 17

Common Parameters:

Parameter Example Description
<host:port> tandem:3000 The host where RSQLSRV is installed.
<dictvol> $DATA.MYDICT The DDL dictionary subvolume. Expand names are

allowed.
<item> MY-STRUCT One or more DDL items to convert or "*" for everything.

Common options:

Option Default Description
-u<user> no default Guardian user name.
-p<password> no default Guardian password, use -p for an empty password.
-P<package> empty Java package name for the generated classes.
-v not set Verbose operation.
-d<destdir> current directory The destination directory where all files are generated.
-t<nametrans file> no translation It is possible that the generated names collide and the Java

sources do not compile. A simple text file helps to
overcome this situation:

ddl2java name translation for MYDICT
#
OLD-DDL-NAME-1 NEW-DDL-NAME-1
OLD-DDL-NAME-2 NEW-DDL-NAME-2

Options for generating messages:

Parameter Default Description
-a not set Regenerate all dependent definitions. Without this option,

only changed or missing definitions are generated.
-texts
-notexts

generate all texts Add textual information from the dictionary to the
generated classes. This includes PIC and VALUE clauses,
etc.

-l<html link> not set If you have created an HTML documentation of your
dictionary with ddl2html.exe,1 ddl2java.exe can put the
matching JavaDoc links into the generated sources. Give
the base directory or url.

Options for generating constants:

Parameter Default Description
-c not set Create Constants.java, a static class with DDL

CONST objects. The item list names constants, not
definitions.

Option names and their values are not separated by a space!

1 dd2html is freely available on my website.

Janus API Marcus von Cube Mar 12, 2008 Page 18

2.3.3.3 Sample script
You should use a script to generate or update the generated messages. Here is an example:

setlocal

set prog=c:\bin\ddl2java.exe
set host=tandem:3000
set dict=$DATA.MYDICT
set libdir=lib
set srcdir=src\myapp\msg
set package=myapp.msg
set opts=-uGROUP.USER -pSECRET -v -P%package% -d%srcdir%

if not "%1"=="" goto single

REM create all messages
DEL %srcdir%*.java
%prog% %opts% -a %host% %dict% *

REM create all constants
%prog% %opts% -c %host% %dict% *
goto compile

:single
REM recreate a single message
%prog% %opts% %host% %dict% %1

:compile
javac -cp %lib%\janus.jar -d classes %srcdir%*.java
jar cvf %lib%\mydict.jar -C classes *
javadoc -sourcepath src -classpath %lib%\janus.jar -d docs %package%

endlocal

The script assumes, that the directories src\myapp\msg, lib and docs exist and that janus.jar is
placed in the lib directory. If you have generated an HTML documentation with ddl2html.exe in directory
html, add the following option to the ddl2java.exe command line: -l../../../html.

2.3.3.4 What is generated from the dictionary?

Messages are generated as classes extending janus.util.MessageElement. Each element is itself an
instance of janus.util.MessageElement or of a derived type. There a three different cases:

1. The element is a DDL base type: The generated element is an instance of the corresponding special-
ized class in package janus.util.ddl.

2. The element is a structure which is defined inline in the DDL source: The generated element is an
inner class inheriting from janus.util.MessageElement.

3. The element references another DDL definition in the same dictionary: The generated element is an
instance of the corresponding generated class, which is automatically loaded and generated by ddl2-
java.exe.

An element with an OCCURS clause is mapped to an array of the corresponding type.

Each instance of janus.util.MessageElement is defined by a byte[] buffer and an offset into
this buffer. Only the outermost definition owns the physical buffer, the inner components are mapped to this
buffer at their respective offsets. All marshaling and unmarshaling is done by the setter and getter methods
on the fly. This ensures the maximum possible compatibility with DDL and COBOL semantics. Redefini-
tions and tables are full supported. A structure can be treated as a single element of character type. Setting
the value of the structure modifies all contained elements because the buffers are shared.

Not all DDL types are supported, notably floating point, logical values and SQL date/time literals.

Janus API Marcus von Cube Mar 12, 2008 Page 19

Suppose the following DDL definition:
def booking-date heading "Booking Date".
 02 b-year pic 9(4).
 02 b-month pic 99.
 02 b-day pic 99.

Names are translated to mixed case, hyphens are removed except near a digit where they are converted to an
underscore. booking-date becomes BookingDate with an uppercase "B" because it is a class name.

The generated class can be accessed from Java in the following way:
import myapp.msg.*;

...
BookingDate bookingDate = new BookingDate();
String heading = bookingDate.getHeadingText().toString();
String ddlName = bookingDate.getName();

bookingDate.set("20080312");

String dString = bookingDate.toString();
int bookingYear = bookingDate.bYear.get();
int bookingMonth = bookingDate.bMonth.get();
int bookingDay = bookingDate.bDay.get();

There is bunch of meta information from the dictionary that is stored together with the data. It can be used in
client applications to check values against given ranges, display column headings, etc. ENUM values and
level 88 items are converted to static final members of the generated class.

Constants are all packed in the single class <package name>.Constants . Each constant is a member
of type janus.util.DdlText. DDL-Names are left unchanged, except that hyphens are translated to
underscore characters. To access the value of a constant in different formats, use one of the member func-
tions toString(), intValue() or longValue().

It makes a lot of sense to generate JavaDocs from the generated source files, because ddl2java.exe retains the
dictionary comments and generates matching JavaDoc comments.

	1 Introduction
	1.1 History of the the Janus API
	1.1.1 The beginnings
	1.1.2 Getting independent
	1.1.3 Extending the view

	1.2 Basic functionality
	1.2.1 Overview
	1.2.2 What Janus is not meant for
	1.2.3 Installation
	1.2.4 Establishing a connection
	1.2.5 Handling transactions
	1.2.5.1 Starting and ending a transaction
	1.2.5.2 Handling automatic transactions

	1.2.6 Sending messages
	1.2.6.1 What is a message?
	1.2.6.2 Destinations
	1.2.6.3 Timeouts and Nowait I/O

	1.2.7 Receiving UMS messages
	1.2.8 Error handling
	1.2.9 Connection pooling
	1.2.9.1 Connection pools in Java
	1.2.9.2 The web based proxy

	2 API details
	2.1 The Windows DLL
	2.1.1 Installation and general remarks
	2.1.2 Linking the DLL into your application
	2.1.2.1 Visual Basic
	2.1.2.2 Delphi Pascal
	2.1.2.3 C/C++

	2.1.3 API calls
	2.1.3.1 Connection Handling
	2.1.3.2 Transactions
	2.1.3.3 Sending messages
	2.1.3.4 Error information

	2.2 The C API
	2.2.1 Introduction
	2.2.2 Distributed files
	2.2.2.1 Header files
	2.2.2.2 C source files
	2.2.2.3 Sample Clients

	2.2.3 API calls
	2.2.3.1 Connection handling
	2.2.3.2 Disconnection
	2.2.3.3 Errors
	2.2.3.4 Transactions
	2.2.3.5 Sending messages
	2.2.3.6 Server Programming
	2.2.3.7 Tracing and debugging
	2.2.3.8 Utility functions

	2.3 The Java API
	2.3.1 Introduction
	2.3.2 Installation
	2.3.3 Generating Messages from DDL
	2.3.3.1 Installation of ddl2java.exe
	2.3.3.2 Starting ddl2java.exe
	2.3.3.3 Sample script
	2.3.3.4 What is generated from the dictionary?

